
Physics Tutorial 6: Collision Response – Impulse Methods

Summary

Collision response, the final step of our physics engine, is introduced and an impulse based solution is
implemented.

New Concepts

Collision response, Penalty method, Impulse method, Projection method, Impulses.

Introduction

Our physics engine is almost complete. So far we can move objects around the environment in a believ-
able manner, and we can detect when two objects intersect. In this tutorial we discuss how to proceed
when we have identified that two objects have collided in order to move them apart. As you might
expect, the solution is to give each intersecting object a nudge in the direction away from the collision.

In the previous tutorials we have discussed how to identify when an intersection has occurred,
and how to calculate the data required to resolve an intersection. The data which we have calculated
consists of:

• The contact point where the intersection was detected - this is typically inside one or more of
the objects.

• The contact normal - i.e. the direction vector along which the intersecting object must move to
resolve the collision.

• The penetration depth - i.e. the distance along the contact normal that the intersecting object
must move so that it is no longer intersecting.

Remember that, at this point, the physics engine is still dealing with all the simulated objects - the
new physical state of the simulated objects is not made available to the render loop until after the
physics update is complete, so the player will not see any of the intersections between objects, if they

1



are successfully resolved.

The question which is addressed in this tutorial is: how do we use this collision data to move the
intersecting objects apart?

A simple solution would be to simply move the objects along the collision normal by a distance
equal to the penetration depth, by directly changing the position vectors. This is known as the pro-
jection method, and while it will suffice for a simple simulation, it has some fairly obvious drawbacks
related to the objects’ velocities. If the objects are moved apart without changing their velocities
then they will just continue along the same path during the next physics update and are likely to
intersect again; alternatively if the objects are moved apart and the velocity then set to zero then
the simulation feels very unrealistic, as objects tend to bounce off one another rather than stop dead
on first contact. We clearly need a solution which affects the velocities and/or accelerations of the
objects rather than directly affecting the positions.

Algorithms which directly affect the velocities of the intersecting objects are known as Impulse
Methods, whereas algorithms which directly affect the acceleration of the bodies are known as Penalty
Methods. Penalty methods use spring forces to, in effect, pull the objects away from each other by af-
fecting the acceleration through Newton’s second law (F = ma). Impulse methods use instantaneous
nudges, or impulses, to push the objects apart by directly controlling their velocities. In this tutorial
we will concentrate on impulse methods, and in the next tutorial we will discuss penalty methods.

In summary:

• Projection methods - control the position of the intersecting objects directly.

• Impulse methods - control the velocity of the objects, i.e. the first derivative.

• Penalty methods - control the acceleration of the objects, i.e. the second derivative.

Impulses

The impulse method allows us to directly affect the velocities of the simulated objects which have
intersected. This is achieved through the application of an impulse, which can be thought of as an
immediate transfer of momentum between the two bodies. Impulse is a term defined by classical
physics as the accumulated force applied to a body over a specific amount of time (it is therefore
measured in Newton seconds Ns). The impulse J is defined in terms of force F and time period ∆t
as

J = F∆t

We know from Newton’s second law, that F = ma, and we can also write the acceleration a as the
rate of change of velocity v. Substituting these values into the equation for impulse gives us:

J = F∆t = ma∆t = m
∆v

∆t
∆t = m∆v

We also know that momentum is equal to the product of mass and velocity, so an impulse is equivalent
to the change in momentum.

Our plan then is to give colliding objects a nudge, by changing their velocity by an amount equal
to

∆v =
J

m

The question then, is how to calculate the impulse J generated when two bodies collide.

Calculation of Linear Impulse

First, we will discuss what we would like to happen to the velocities of two colliding objects - namely,
we want the bodies to bounce off one another. We will consider the simple case of two spheres colliding,
as shown in the figure – sphere a is moving with velocity va, while sphere b has velocity vb; the collision
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normal is n. We want to calculate the impulse J .

The impulse is generated by the velocity at which the two spheres have collided so we are interested
in the relative velocity of the two objects, which we will label vab. The component of the relative
velocity which caused the collision is along the normal vector, so we calculate the dot product of the
relative velocity and the normal:

vab = va − vb

vn = vab · n

The velocity along the normal after collision is dependent on the coefficient of elasticity ε. A
coefficient of 1 means the collision will be purely elastic, so all the velocity is transferred, whereas
a coefficient of zero is purely non-elastic, so no velocity is transferred. A purely non-elastic collision
will result in the two bodies staying together (i.e. no bounce); a purely elastic collision is a perfect
bounce so no damping or slowing down occurs. Your simulation is likely to require a figure somewhere
in between. Quite often different object types in a game will have different coefficients of elasticity
which are stored as a member of the object class, in the same way as the mass is.

The coefficient of elasticity is the factor by which the velocity before the collision is multiplied to
calculate the velocity after the collision. Hence:

v+n = −εv−n

or, substituting for vn:
(v+a − v+b ) · n = −ε(v−a − v−b ) · n

Note the introduction of − and + nomenclature to denote the state of the bodies before and after
the collision respectively. Also note the negation of the velocity - remember we want to push the two
bodies back apart in the opposite direction to their colliding velocity.

We also need to think about the momentum of the two bodies. You will remember from the first
tutorial in this series on Newtonian mechanics that the total momentum must remain constant in any
collision. However our plan to resolve the collision is to ”inject” some momentum into the system.
Hence we need to ensure that the overall additional momentum is equal to zero, which is achieved by
making the momentum used to nudge the second body, the exact opposite of that used to nudge the
first. This is shown in the equations below, showing the relationship between momentum before and
after the collision for each body, where J is the injected impulse along the normal vector n.

mav
+
a = mav

−
a + Jn

mbv
+
b = mbv

−
b − Jn

Note that it is the injected momentum which is equal and opposite, not the velocity as that will be
affected by the mass of the object and therefore unequal for differently sized objects. Combining the
last three equations, allows us to solve for the impulse J

J =
−(1 + ε)vab · n
n · n( 1

ma
+ 1

mb
)
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which in turn allows us to calculate the velocities of the two bodies after the collision:

v+a = v−a +
J

ma
n

v+b = v−b − J

mb
n

So we can now calculate the velocity at which two colliding bodies should move away from one another
in a manner which feels believable, as it is based on Newtonian mechanics, and which incorporates a
”bounciness” factor for different types of object in the form of the coefficient of elasticity. Remember,
as ever, that the velocities we are discussing are three dimensional vectors – the bodies can move
along all three axes of the simulated world. They can also rotate around all three axes, so next we
need to consider how to account for rotational elements in collision response.

Calculation of Angular Impulse

Let’s add some spin to our two colliding spheres. The angular velocity of each is ωa, ωb and the radius
is ra, rb respectively

In order to realistically add angular motion to a collision response, we need some more information
about the actual contact point between the two objects – specifically the velocity of that point on
each of the objects. This is the sum of the object’s linear velocity, and the extra tangential velocity
vt created by the fact that the point is rotating around the object’s centre. The velocity at a point
which is distance r from the centre on an object turning with angular velocity ω is

vt = ωr

Remember that rotational velocity is measured in radians, and there are 2π radians in a full revolu-
tion; similarly the distance around that revolution is 2πr.

So the velocity of the contact point vC on each object is:

vCa = va + ωara

vCb = vb + ωbrb

Again we need to ensure that angular momentum is conserved, so:

Iaω
+
a = Iaω

−
a + ra × Jn

Ibω
+
b = Ibω

−
b − rb × Jn

Remember that the angular momentum of a body is the product of the angular velocity ω and the
inertia tensor I. J is the impulse which we are calculating and n is the collision normal. Solving
our equations for J , taking into account the angular momentum, leads to a much more complicated
looking calculation for the impulse:

J =
−(1 + ε)vab · n

n · n( 1
ma

+ 1
mb

) + [(I−1
a (ra × n)) × ra + (I−1

b (rb × n)) × rb] · n
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which again allows us to calculate the velocities of the two bodies after the collision, as well as the
angular velocities:

v+a = v−a +
J

ma
n

v+b = v−b − J

mb
n

ω+
a = ω−

a +
ra × Jn

Ia

ω+
b = ω−

b +
rb × Jn

Ib

These equations allow us to write an algorithm in C++ to believably simulate two objects colliding
and bouncing off one another using Newtonian mechanics. Both linear and angular movement are
accounted for, and the elasticity of the collision is also incorporated.

More Complex Shapes

The simple case of two colliding spheres has been used to illustrate the algorithms employed in impulse
method collision response. The algorithms are perfectly suited to more complex three-dimensional
shapes. In fact, you should notice that there are no assumptions about the shapes made in the
calculations. When implementing the code, you will see that all calculations are carried out in three
dimensions, so for example the distance of a contact point from the centre of an object is a vector
containing three values – it does not matter whether that point is on the surface of a sphere or a more
complex shape. Similarly the relationship between angular velocity and linear velocity is irrespective
of the object shape, it is based purely on the distance of the point of interest from the centre of
rotation.

Implementation

The aim of this practical session is to expand your physics engine to react to collisions between
simulated objects. We will implement the impulse method for both linear and angular motion. To
demonstrate that the collision tests are working, we will add functionality to the project which bounces
colliding objects off one another.

1

2 static void AddCollisionImpulse( Cube& c0 ,

3 Cube& c1,

4 const Vector3& hitPoint ,

5 const Vector3& normal ,

6 float penetration)

7 {

8 // Some simple check code.

9 float invMass0 = (c0.m_mass >1000.0f) ? 0.0f : (1.0f/c0.m_mass );

10 float invMass1 = (c1.m_mass >1000.0f) ? 0.0f : (1.0f/c1.m_mass );

11

12 invMass0 = (!c0.m_awake) ? 0.0f : invMass0;

13 invMass1 = (!c1.m_awake) ? 0.0f : invMass1;

14

15 const Matrix worldInvInertia0 = c0.m_invInertia;

16 const Matrix worldInvInertia1 = c1.m_invInertia;

17

18 // Both objects are non movable

19 if ( (invMass0+invMass1 )==0.0 ) return;

20

21 Vector3 r0 = hitPoint - c0.m_c;

22 Vector3 r1 = hitPoint - c1.m_c;

23

24 Vector3 v0 = c0.m_linVelocity + Cross(c0.m_angVelocity , r0);
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25 Vector3 v1 = c1.m_linVelocity + Cross(c1.m_angVelocity , r1);

26

27 // Relative Velocity

28 Vector3 dv = v0 - v1;

29

30 // If the objects are moving away from each other

31 // we dont need to apply an impulse

32 float relativeMovement = -Dot(dv , normal );

33 if (relativeMovement < -0.01f)

34 {

35 return;

36 }

37

38 // NORMAL Impulse

39 {

40 // Coefficient of Restitution

41 float e = 0.0f;

42

43 float normDiv = Dot(normal , normal) * ( (invMass0 + invMass1)

44 + Dot( normal , Cross( Transform( Cross(r0 , normal),

45 worldInvInertia0), r0)

46 + Cross( Transform( Cross(r1 , normal),

47 worldInvInertia1), r1) ) );

48

49 float jn = -1*(1+e)*Dot(dv , normal) / normDiv;

50

51 // Hack fix to stop sinking

52 // bias impulse proportional to penetration distance

53 jn = jn + (penetration *1.5f);

54

55 c0.m_linVelocity += invMass0 * normal * jn;

56 c0.m_angVelocity += Transform(Cross(r0 , normal * jn),

57 worldInvInertia0 );

58

59 c1.m_linVelocity -= invMass1 * normal * jn;

60 c1.m_angVelocity -= Transform(Cross(r1 , normal * jn),

61 worldInvInertia1 );

62 }

63

64 // TANGENT Impulse Code

65 {

66 // Work out our tangent vector , with is perpendicular

67 // to our collision normal

68 Vector3 tangent =Vector3 (0,0,0);

69 tangent = dv - (Dot(dv , normal) * normal );

70 tangent = Normalize(tangent );

71

72 float tangDiv = invMass0 + invMass1

73 + Dot( tangent , Cross(( Cross(r0 , tangent)

74 * c0.m_invInertia), r0)

75 + Cross(( Cross(r1 , tangent) * c1.m_invInertia), r1) );

76

77 float jt = -1 * Dot(dv , tangent) / tangDiv;

78 // Clamp min/max tangental component

79

80 // Apply contact impulse

81 c0.m_linVelocity += invMass0 * tangent * jt;

82 c0.m_angVelocity += Transform(Cross(r0 , tangent * jt),

6



83 worldInvInertia0 );

84

85 c1.m_linVelocity -= invMass1 * tangent * jt;

86 c1.m_angVelocity -= Transform(Cross(r1 , tangent * jt),

87 worldInvInertia1 );

88 } // TANGENT

89 }

Impulse Method

Tutorial Summary

In this tutorial we have introduced the concept of collision response with particular focus on impulse
methods, i.e. a method which directly affects the velocities of colliding objects in order to resolve that
collision. In the next tutorial we will look at penalty methods for collision response.
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